Southern Meridiani Phyllosilicate / Sulfate + Hematite Contact

R. E. Arvidson, S. M. Wiseman, and The CRISM Team

Phyllosilicate / Sulfate + Hematite Contact

- In place Noachian phyllosilicate exposures —> diverse mineral assemblage
 - In place alteration of Noachian crust?
 - Sedimentary deposits?
 - Impact related?
- Middle to late Noachian fluvial dissection
 - Geomorphic evidence for widespread fluvial activity during the middle to late Noachian period
 - Fluvial dissection of phyllosilicate-bearing materials
- Noachian / Hesperian contact
 - Sulfate and hematite rich plains unit analyzed by the Opportunity rover 75 km to the north embays phyllosilicate-bearing terrain
 - Sample different more basal stratigraphic level in sulfate
 -hematite unit → synergy with MER Opportunity

THEMIS CDP Analysis

South Meridiani THEMIS spectral endmembers

- Two slightly different basaltic composition units are present in the data
 - The two units are combined in the unit maps because they are not cleanly separated
- Low-contrast surfaces may be due to high hematite concentrations, variable surface textures, or slight dust contributions

THEMIS spectral unit mosaics

TES analysis of THEMIS spectral units

- All surfaces have significant plagioclase and pyroxene (~20-40%)
- Olivine, sulfates, high-silica phases are present at lower levels
 - Consistent with slight aqueous alteration?
 - Sulfate detection is questionable, but not unreasonable
 - Landing ellipse is spectrally similar to MER Meridiani

Hematite Concentrations

 Significant hematite concentrations are present within the landing ellipse

0.5

Concentration (relative to strongest signal)

Summary

- Two slightly different units with compositions similar to basalt may be present within the South Meridiani landing site region
 - Differences between units is subtle and not well separated in THEMIS and TES data
 - Some amount of aqueous alteration is likely even in regions without hematite
- Significant hematite concentrations are located within the landing ellipse
- Dust is not significant throughout most of the region

TES hematite map on a THEMIS day time infrared mosaic [Bandfield and Rogers]

O Concentration 0.5 (relative to strongest signal)

THEMIS day time infrared mosaic with CRISM high resolution footprints overlain (also have HiRISE and CTX coverage)

CRISM CDP Products (F. P. Seelos and O. S. Barnouin-Jha)

CRISM CDP Continued

FRT 91C5 IR_PHY regional stretch

FRT 91C5 IR_PHY image stretch

red = BD2300 (Fe/Mg phyllosilicate) green = BD2210 (Al phyllosilicate or hydrated glass) blue=BD1900 (hydrated sulfates, clays, or glass)

CRISM FRT 91C5 and FRT A063

Phyllosilicate Diversity

CRISM phyllosilcate spectral signatures correlate with polygonally fractured bedrock in HiRISE → phyllosilicates are 'in place.'

- Plains material embays phyllosilicate-bearing terrain
- → Phylloslicates predate formation of plains unit explored by Opportunity rover ~75 km to the north

Discussion

- Good geologic context
 - Phyllosilicate alteration/deposition during the Noachian period
 - In place material
 - Unconformity: Period of fluvial erosion (middle to late Noachian)
 - Accumulation of sulfate-rich sediments (late Noachian / early Hesperian)
- Diversity: Two distinct geochemical environments accessible to rover (within ~10 km traverse from center)
 - Phyllosilicate alteration, likely in a an open hydrologic regime under moderate pH conditions with high water to rock ratio
 - Deposition of sulfate-rich evaporitic deposits in a ground water dominated regime, lower water to rock ratio
- Intact Noachian / Hesperian contact
 - Older, altered Noachian basement and younger sedimentary sulfate-rich deposits
 - Relative age relationship clear because phyllosilicate materials are fluvially dissected and embayed by sulfate and hematite plains

Phase I: Sedimentary Stratigraphy

Plains unit

- Landing ellipse within sulfate and hematite plains unit explored by the MER Opportunity rover ~75 km to the north
- Light-toned layered bedrock overlain by thin sand sheet
- Hematite detections (TES) within ellipse, inferred to be sulfate-rich based on MER ground truth

More basal strata exposed

- Near unit margin
- 75 km to south of Opportunity rover
- 200 m lower in elevation (coupled with regional slope to the north, this is likely much lower in the stratigraphic section than the Burns formation)
- Characterize with MSL assets
 - Synergy with MER
- Preservation potential
 - Depositional / evaporitic environment → Good
- Habitability
 - Water activity?

250 m in diameter crater PSP_7348_1765 subset

Phase II: Noachian / Hesperian Contact

- Traverse south from landing site (10 km)
 - Characterize contact between sedimentary sulfate-rich deposits and Noachian basement
 - Distinct horizon??
 - Geochemical contact?
- Fluvial dissection
 - Geomorphic evidence for fluvial dissection
 - Overland flow of water
 - Channel related deposits?

Phase III: Noachian Phyllosilicates

- Mineral Diversity
 - Al-rich phyllosilicates High water to rock ratio
 - Kaolinite
 - Montmorillonite
 - Fe / Mg smectite
- Compositional stratification
 - Detailed mapping with HiRISE and CRISM in progress
 - Is mineral diversity related to
 - Original composition?
 - Geochemical variations?
- Formation hypotheses to test
 - Inplace alteration of Noachian crust
 - Hydrothermal circulation?
 - Sedimentary deposits
 - Pedogenic process?
 - Impact related
- Preservation potential
 - Smectite clays → GOOD
 - Biomarkers, fossils
- Habitability
 - Geochemical conditions implied by phyllosilicates → GOOD

